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Imaging Genetics with Partial Least Squares for Mixed-Data
Types (MiMoPLS)
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Abstract “Imaging genetics” studies the genetic contributions to brain structure and function by finding cor-
respondence between genetic data—such as single nucleotide polymorphisms (SNPs)—and neuroimaging
data—such as diffusion tensor imaging (DTI). However, genetic and neuroimaging data are heterogenous
data types, where neuroimaging data are quantitative and genetic data are (usually) categorical. So far, meth-
ods used in imaging genetics treat all data as quantitative, and this sometimes requires unrealistic assump-
tions about the nature of genetic data. In this article we present a new formulation of Partial Least Squares
Correlation (PLSC)—called Mixed-modality Partial Least Squares (MiMoPLS)—specifically tailored for
heterogeneous (mixed-) data types. MiMoPLS integrates features of PLSC and Correspondence Analysis
(CA) by using special properties of quantitative data and Multiple Correspondence Analysis (MCA). We il-
lustrate MiMoPLS with an example data set from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
with DTI and SNPs.
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6.1 Introduction

Imaging genetics (and “imaging genomics”) combines two scientific disciplines: neuroimaging—often from
the cognitive neuroscience perspective—and genetics—often from the genomics perspective [1,2]. Imaging
genetics integrates neuroimaging and genetic data to understand how genetics contributes to brain structure
and function—often with respect to diagnostic criteria or complex behavior and traits (such as personality).
Usually, the data sets in imaging genetics are very large: neuroimaging data (measured in number of voxels)
can comprise up to one million variables, whereas genetic data (often genome-wide with single nucleotide
polymorphisms [SNPs]) can comprise more than three million variables. With such large data sets it is
often impractical to use mass-univariate statistics, simply because the corrections for multiple comparisons
become then too drastic.

So, instead of using mass-univariate approaches, imaging genetics researchers often turn to multivariate
methods [3] such as sparse reduced rank regression [4], distance matrix regression [5], independent compo-
nents analysis [6,7], Canonical Correlation Analysis (CCA) [8], or Partial Least Squares (PLS) [16]. Because
the goal of imaging genetics is to understand the relationships between imaging and genetics, researchers
often turn to multivariate techniques designed to conjointly analyze two tables of data (e.g., imaging and
genetics). However, nearly all implementations of CCA, PLS, and most other multivariate techniques are
designed for quantitative data and this can be problematic because many types of genetic data—especially
SNPs—are categorical data.

6.1.1 Ambiguity with Allelic Coding

With the advent of genome-wide technology, many biological, medical, and psychological disciplines con-
duct genome-wide association (GWA) studies. Typically, genome-wide data consist in single nuclear poly-
morphisms (SNPs) [17]. A SNP is expressed by the two nucleotide letters that exist at a particular genomic
location. These two letters can be, for example, AA, AT, or TT. For a given SNP, each letter can be a ma-
jor allele—say A—or a minor allele—say T. For analyses, SNPs are often recoded into an allelic count;
typically, SNPs emphasize the minor allele. Thus our example—AA, AT, and TT—would be recoded re-
spectively as the numbers 0, 1, or 2 (because AA has 0 minor allele, and TT has 2 minor alleles). This
{0,1,2} coding scheme is often called an “additive” model. In biological, medical, and psychological studies
with SNPs, the minor allele is usually assumed to be associated with risk for diseases and disorders [18,19].

This allelic count makes several unrealistic assumptions. First, the {0,1,2} scheme is an implicit contrast—
which, in GWA studies, emphasizes the minor allele for hundreds of thousands or even millions of SNPs.
Second, this contrast is linear even though many risk factors are non-linear (e.g., risk of Alzheimer’s Disease
from ApoE) [20]. Finally, because the minor allele frequency is usually computed per study sample, there
is a possibility that a separate sample would detect a different minor allele, and so the “2” in one study
would be a “0” in another study (and this could create problems with replication); thus the only unambigu-
ous zygote—across different samples and populations—is the heterozygote marked as “1” (e.g., AT in our
example).

To avoid these measurement assumptions, SNPs can be expressed in a purely categorical format that pre-
serves exactly the alleles found without presuming a linear contrast effect. However, there exists only a few
statistical methods (e.g., Multiple Factor Analysis, [21]) designed to simultaneously analyze heterogeneous
data such as SNPs (categorical) and neuroimaging (continuous). In this paper, we provide a new formula-
tion of PLS designed for heterogeneous data types that allows both SNPs and imaging data to remain in
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their natural formats (categorical, and continuous, respectively). This approach—called“mixed-modality”
PLS (MiMoPLS)—generalizes PLS for use with data sets that comprise both quantitative and categorical
variables.

6.2 Notation and Prerequisites

This section presents the notations and a sketch of the main prerequisite methods: the singular value decom-
position and its generalization, principal components analysis, (multiple) correspondence analysis, partial
least squares correlation, and partial least squares correspondence analysis.

6.2.1 Notation

Uppercase bold letters denote matrices (e.g., X) and lower case bold letters denote vectors (e.g., x). The
transpose operation is denoted T, the inverse operation −1, and the diagonal operation—which turns a vector
into a diagonal matrix, or extracts the diagonal as a vector from a diagonal matrix—is denoted diag{}. The
identity matrix is denoted I, an identity matrix of a specific size is denoted Ia where a indicates the size (i.e.,
the number of rows and columns) of I; 1a is a vector of ones of length a. Matrices denoted as Z∗ are centered
and normalized (i.e., each column of Z∗ has mean 0 and norm 1). Italic or bold subscripts of a matrix denote
its relationship with an index or another matrix (e.g., matrix ZY is centered and normalized Y, matrix WK
denotes the “weights” matrix derived from the K set).

6.2.2 The singular value decomposition

The singular value decomposition (SVD) of a J×K matrix R of rank L (with L≤min(J,K)) is expressed as

R = U∆∆∆VT, where UTU = IL = VTV, (6.1)

where U is the J×L matrix of the left singular vectors, V the K×L matrix of the right singular vectors, and
∆∆∆ is an L×L diagonal matrix whose diagonal contains the singular values (ordered from the largest to the
smallest). When squared, the singular values become eigenvalues and so ΛΛΛ = diag{∆∆∆}2 is a diagonal matrix
of eigenvalues. The first singular value and pair of singular vectors are solution of the following optimization
problem:

δ = arg max
u,v

(
uTRv

)
under the constraints uTu = vTv = 1. (6.2)

The other pairs of singular vectors are solutions of the same optimization problem with the additional con-
straint that right (respectively left) singular vectors are orthogonal to all other right (respectively left) singular
vectors associated with a larger singular value (see [9–11], for details).
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6.2.3 The generalized singular value decomposition

The generalized singular value decomposition (GSVD) generalizes the SVD by imposing, on the left and
right singular vectors, orthogonality constraints (also called “metrics”) expressed by positive-definite matri-
ces denoted ΩΩΩ and ΦΦΦ [9–11]. The GSVD of a J×K matrix R of rank L (with L ≤ min(J,K)) is expressed
as

R = U∆∆∆VT, with UT
ΩΩΩU = IL = VT

ΦΦΦV. (6.3)

The first generalized singular value and pair of generalized singular vectors are solution of the following
optimization problem (cf. 6.2):

δ = arg max
u,v

(
uTRv

)
under the constraints uT

ΩΩΩu = vT
ΦΦΦv = 1. (6.4)

The other pairs of singular vectors are solutions of the same optimization problem with the additional con-
straint that right (respectively left) singular vectors are ΩΩΩ-orthogonal (respectively ΦΦΦ–orthogonal) to all other
right (respectively left) singular vectors associated with a larger singular value.

In a multivariate framework, factor and component scores are obtained as:

FJ = ΩΩΩU∆∆∆ and FK = ΦΦΦV∆∆∆. (6.5)

Often, the GSVD is expressed via the compact “triplet notation” [12–14] and, for example, with this notation,
the GSVD of Equation 6.3 is presented as the analysis of the triplet (R,ΦΦΦ,ΩΩΩ).

6.2.3.1 Principal Components Analysis

PCA analyzes a quantitative data matrix X with I rows (observations) and J columns (variables) [15]. The
matrix X is first pre-processed such that columns are centered and often normalized (i.e., the sum of squares
of each column equals 1). With the centered and normed matrix denoted ZX, PCA is then defined as the
analysis of the triplet (ZX,IJ ,II).

6.2.3.2 Correspondence Analysis

Correspondence Analysis (CA) is analogous to a PCA but for—typically—contingency tables (i.e., the cross
product of two disjunctive data tables; see Table 6.1) [10, 11, 22, 23]. CA requires specific pre-processing
and constraints prior to the GSVD step. First, for a matrix R of size J by K we compute a matrix of observed
values:

OR = N−1R (6.6)

where N is the total sum of R. The row (respectively column) constraint matrix M (respectively W)) is
defined as:

m = OR1J and M = diag{m} , (6.7)

and (respectively) as
w = 1KOR and W = diag{w} (6.8)
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where m (respectively w) is the vector of the row (respectively column) sums of OR. Next, we compute a
matrix of expected:

ER = mwT. (6.9)

Finally, we compute the matrix of deviations:

ZR = OR−ER, (6.10)

Finally, the CA of R is performed from the analysis of the triplet
(
ZR,W−1,M−1

)
.

Table 6.1: Example of nominal data table, and its disjunctive counterpart.

(a) Nominal

Variable 1 . . . Variable J

Subj.1 A . . . A

Subj.2 A . . . A

. . . . . . . . . . . .

Subj.I-1 B . . . C

Subj.I C . . . B

(b) Disjunctive

Variable 1 . . . Variable J

A B C A B C

Subj.1 1 0 0 . . . 1 0 0

Subj.2 1 0 0 . . . 1 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

Subj.I-1 0 1 0 . . . 0 0 1

Subj.I 0 0 1 . . . 0 1 0

6.2.3.3 Multiple Correspondence Analysis

Multiple correspondence analysis (MCA) is a specific version of CA applied to a single disjunctive data
table (see Table 6.1). MCA can be carried out by following the steps of CA as outlined in Section 6.2.3.2.
However, there are several ways to define MCA as a centered, non-normalized, and weighted PCA [21].
Here, we provide another alternative MCA formulation.

Given a matrix N with I rows as observations and N nominal columns (see Table 6.1a.), we then transform
N into the disjunctive formated (see Table 6.1b.) matrix R, which has I rows and J columns. First, we define
the constraints, where R is the sum of R:

M = III and m = diag{M} (6.11)

w = R−1 (1JR) and W = diag{w} . (6.12)

MCA can now be performed as the analysis of triplet:
(
R−1ZR,W−1,M

)
, where ZR is the centered non-

normalized version of R.
PCA and MCA are equivalent when all variables have exactly two levels [10, 11]. For example “yes”

vs. “no” which would be coded as [1 0] and [0 1], respectively. The equivalence holds in the following
case. Traditional MCA—as performed via CA—would be applied to the complete disjunctive matrix (which
represents all levels), whereas PCA would be applied to a strictly binary table where each variable is repre-
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sented by only 1 column. In this case, for example, “yes” is denoted with a 1 whereas “no” is denoted with
a 0 (essentially, just half of the usual table for MCA).

6.2.4 Partial Least Squares Correlation

Partial Least Squares Correlation (PLSC) [24–27] exists under a wide varieties of other appellations such
as the SVD of two covariance fields [28], PLS-SVD [29], canonical covariance analysis [30], or co-inertia
analysis [13], but is probably best traced back to Tucker’s inter-battery factor analysis [31]—a method that
analyzes the information common to two data tables measured on the same set of observations. Given two
matrices, X and Y, each containing I rows (observations) with (respectively) J columns (X’s variables) and
K columns (Y’s variables), the matrices ZX and ZY are the centered and unitary normed versions of X and
Y. With ZR = ZT

XZY, PLSC is then defined as the analysis of the triplet (ZR,WY,WX) where WX = IJ and
WY = IK , PLSC extracts the information common to X and Y by computing two sets of latent variables
defined as:

LX = ZXWXU and LY = ZYWYV (6.13)

In PLSCA, associated latent variables have maximal covariance. Specifically, call u` and v` the linear
transformation coefficients for ZX and ZY respectively. A latent variable for each matrix is defined as
lX = ZXWXu` and lY = ZYWYv` where

arg max
u,v

(
lXTlY

)
= arg max

u,v
cov(lX, lY) , (6.14)

under the constraints that u` and v` have unit norm:

u`
TWXu` = 1 = v`TWYv`. (6.15)

After the `-th pair of latent variables are extracted, the subsequent ones are extracted under the additional
constraint of orthogonality:

lX`
TlY

`
′ = 0 when ` 6= `

′
. (6.16)

Each successive lX and lY is stored in LX and LY, respectively, where

LT
XLY = UTWXZT

XZYWYV = UTWXZRWYV = UTWXU∆∆∆VTWYV = ∆∆∆, (6.17)

because UTWXU = IL = VTWYV (where L is the rank of ZR). The latent variables of PLSC maximize the
covariance as expressed by the singular values (for proofs, see [27, 31]).

6.2.5 Partial Least Squares-Correspondence Analysis

Recently, we presented a PLSC method designed specifically for the analysis of two categorical data matri-
ces: Partial Least Squares-Correspondence Analysis (PLSCA)—a technique that combines features of PLSC
and CA [32]. PLSCA can be expressed as follows: X and Y are disjunctive matrices where R = XTY is a
contingency table. CA, as defined in Section 6.2.3.2, is applied to R. The latent variables in PLSCA are
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computed according to Equation 6.13, where:

ZX = I
1
2 X−1X (6.18)

ZY = I
1
2 Y−1Y (6.19)

where X and Y are (respectively) the sums of X and Y, and where WX and WY are computed from Equa-
tions 6.7 and 6.8 (i.e., M and W).

6.3 PLSC for mixed data types

Here we establish a framework for PLSC that applies to mixed data types. We formalize this approach with
respect to one table of continuous data and one table of categorical data. Categorical data can be treated as
continuous data and analyzed with PCA to produce identical results to a MCA (see Section 6.2.3.3).

6.3.1 Escofier-style transform for PCA

In 1979, Brigitte Escofier presented a technique to analyze continuous data with CA to produce the same
results as PCA (within a scaling factor) [33]. Escofier showed that a quantitative variable, say x (i.e., a
column from the matrix X) that is centered with unitary norm, can be analyzed with CA if it is expressed as
two vectors: 1−x

2 and 1+x
2 (see Table 6.2). Incidentally, dividing each set by 2 with this Escofier-style coding

is superfluous when using the stochastic version of CA (see Section 6.2.3.2).

Table 6.2: Example of Escofier’s coding scheme of continuous data to perform a CA on continuous data. x j
denotes the j vector from a matrix X where xi, j denotes a specific value at row i and column j. This coding
scheme is similar to the thermometer coding scheme often used for ordinal data in MCA.

(a) Continuous data

x1 . . . xJ

Subj.1 x1,1 . . . x1,J

Subj.2 x2,1 . . . x2,J

. . . . . . . . . . . .

Subj.I-1 xI−1,1 . . . xI−1,J

Subj.I xI,1 . . . xI,J

(b) Escofier-style transform

−x1 +x1 . . . −xJ +xJ

Subj.1
1−x1,1

2
1+x1,1

2 . . .
1−x1,J

2
1+x1,J

2

Subj.2
1−x2,1

2
1+x2,1

2 . . .
1−x2,J

2
1+x2,J

2

. . . . . . . . . . . . . . . . . .

Subj.I-1
1−xI−1,1

2
1+xI−1,1

2 . . .
1−xI−1,J

2
1+xI−1,J

2

Subj.I
1−xI,1

2
1+xI,1

2 . . .
1−xI,J

2
1+xI,J

2

Call ZX the centered and unitary norm version of X with I rows and J observations, where B− = 1−ZR
and B+ = 1+ZR where

B =
[
B− B+

]
, (6.20)
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The matrix B can then be analyzed with CA (as in Section 6.2.3.2) which is equivalent to a PCA via the
analysis of the triplet:

( 1
IJ ZX,JIJ , III

)
.

There is one exception to the equivalence between these two methods: in the Escofier-style approach, the
number of columns in B is 2J, where J is the number of columns in X. Each variable from X has essentially
been duplicated in B much like “thermometer coding” (a.k.a. doubling or fuzzy coding [34]) for ordinal data
analysis with MCA. Thermometer coding expresses each variable by two points that are equidistant from 0
(i.e., the mean).

6.3.2 Escofier-style transform for PLSC

To formalize PLSC for mixed data types, we first, define PLSC approach for 2 continuous data matrices—X
and Y—but in the Escofier framework (Section 6.3.1 and also see Table 6.2). Let us call BX the Escofier-
style transform of X and BY the Escofier-style transform of Y. If we use the standard form of PLSC, we
decompose BR = BT

XBY, where:

BR =

(BT
X−BY−

) (
BT

X−BY+

)
(
BT

X+BY−
) (

BT
X+BY+

)
 . (6.21)

Because BX and BY are each in the Escofier-style (i.e., pseudo-categorical), this problem can be treated as
one tailored for PLSCA (i.e., PLSC for the two categorical matrices; see Section 6.2.5). The PLSCA of
BT

XBY is equivalent to the PLSC (see Section 6.2.4) of ZX and ZY (within scaling factors). There are three
items used to define equivalence between these approaches: (1) singular values, (2) component scores (for
both rows and columns), and (3) latent variables.

Call (respectively) ∆∆∆ZR and ∆∆∆BR the singular values from a standard PLSC (of ZX and ZY) and the singular
values from an Escofier-style PLSCA (of BX and BY). We use the Escofier style approach as the preferred
method because, as an extension of CA, it provides a natural dual representation of the rows and columns.
To transition between the two approaches, we do the following:

∆∆∆BR =
1

I
√

JK
∆∆∆ZR . (6.22)

The transition between component scores is also defined as follows:

FJBR =
1

I
J

√
J2K

[
−FJZR FJZR

]
(6.23)

FKBR =
1

I
K

√
K2J

[
−FKZR FKZR

]
. (6.24)

And finally, the transition between latent variables are:

LBX =
√

IJ LZX (6.25)

LBY =
√

IK LZY , (6.26)
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where the latent variables for the “standard” approach are defined as in Section 6.13, and the computation of
latent variables for the Escofier-approach are defined as those for PLSCA in Section 6.2.5.

We have to duplicate the component scores from the standard PLSC and multiply by −1 because the
Escofier-style transform is a “thermometer” style coding of the data (equidistant above and below 0; see
Table 6.2). Given these properties, we can compute the standard PLSC with equivalence to the PLSCA via
the GSVD as follows. First define ZX∗ and ZY∗:

ZX∗ = J−1

√
1
I

ZX (6.27)

ZY∗ = K−1

√
1
I

ZY (6.28)

ZR∗ = ZT
X∗ZY∗, (6.29)

where (1) ZX and ZY are centered and normed matrices of (respectively) X and Y, (2) I are the number
of rows (observations) in X and Y, and (3) J and K are the number of columns (variables) for X and Y.
To produce the same results as the Escofier-style PLSC approach, the GSVD is described by the triplet:
(ZR∗,KIK ,JIJ). Thus, for continuous data, we can transition between the standard approach to PLSC (see
Section 6.2.4) and the Escofier-style approach to PLSCA (see Section 6.2.5).

6.3.3 Mixed Data and PLSC

The Escofier-style transformed matrix (see Table 6.2) is similar to a fully disjunctive matrix; and, because
PLSC and PLSCA are equivalent when using Escofier-style pseudo-categorical matrices, we can use PLSCA
to analyze mixed data types (i.e., one matrix of continuous data and one matrix of categorical data).

Call BY the Escofier-style transform of a continuous data matrix Y and call X a fully disjunctive data
matrix (as in Table 6.1). Because both matrices are in a categorical or pseudo-categorical format, we can
define R = XTBY as a pseudo-contingency table since this R is the cross-product between a categorical
matrix and a pseudo-categorical matrix. In fact, R expresses some of the properties we would expect from a
contingency table but maintains the properties of X and BY: the column sums of R are equal to one another—
just as in BY and are also proportional to the column sums of BY. This is also true for the row sums of R
and the column sums of X. Thus, the relationship between X and BY can be analyzed with PLSCA (see
Section 6.2.5) and the properties that define PLSC still hold (see Sections 6.2.4 and 6.2.5).

However, there is a minor drawback to this approach: The continuous data matrix, Y, represents each vari-
able twice in BY (see Section 6.2) and this could be problematic for very large data sets (e.g., neuroimaging,
genomics). Thus, we now define a mixed data approach to PLS closer to PLSC, but that keeps key properties
of CA (i.e., dual representation, distributional equivalence, emphasis on rare occurrences). Call Y a data
matrix, with J columns, of continuous data where ZY is centered and normalized. Call X a fully disjunctive
matrix, with K columns from N variables, where ZX is centered but not normalized. Both X and Y have I
rows (i.e., observations). First we define the data matrices derived from X and Y:
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ZX∗ = N−1

√
1
I

ZX (6.30)

ZY∗ = K−1

√
1
I

ZY. (6.31)

Next, we define weights associated to each set (where X is the sum of X):

wX = X−11IX and WX = diag{wX} , (6.32)

and WY = KIK . PLSC can then be performed on ZY∗ and ZX∗ where WX and WY are constraints for the
GSVD. The GSVD step of PLSC in this case would analyze the triplet:

(
R,WY,W−1

X
)

with R = ZT
X∗ZY∗.

This approach is derived, in part, from MCA where MCA is treated as a centered, non-normalized, weighted
PCA (see Section 6.2.3.3) and the standard approach to PLSC (see Section 6.2.4). We also imposed particular
constraints on this formulation so that the results here would be equivalent to those done on X and BY
obtained with PLSCA. However, there is also a drawback to this reformulation: supplemental projections
are more difficult to compute than in the CA approach. Therefore, we define MiMoPLS in one, final, way
that combines the simplicity of the PLSCA approach with the minimally required data in the PLSC approach.

First, X is the complete disjunctive matrix where BY+ = ZY + 1 (see Eq. 6.21 and Section 6.3.3), and
R = XTBY+. The total sum of BY+ is equal to IK, where I is the number of observations and K is the
number of columns in Y and we then use CA (see Section 6.2.3.2) where both wX and WX are obtained from
Equation 6.32, and where WY = K−1IK where wY = diag{WY}. Next we define the observed, expected,
and deviations matrices (with R being the sum of all elements of R):

OR = R−1R (6.33)

ER = wXwT
Y (6.34)

ZR = OR−ER. (6.35)

The GSVD step then correspond to the analysis of the triplet
(
ZR,W−1

Y ,W−1
X
)
. Finally, the latent variables

are computed as:

LX =
(

I
1
2 X−1X

)
W−1

X U (6.36)

LX =
(

I
1
2 B−1ZY

)
W−1

Y V, (6.37)

where ZY is the column centered and normalized version of Y, and where X and B are (respectively) the
sums of X and BY+. Recall that X is equal to IN, where N is the number of variables in X, and B is equal
to IK and this makes Equations. 6.36 analogous to the computation of the “observed” values in CA (see
Section 6.2.3.2).

We now have an approach of analyzing mixed data types that (1) is in the PLSC fashion, (2) maintains
the properties of PLSCA and CA (e.g., dual representation, simple supplemental projections), and (3) does
not duplicate the representation of the continuous data matrix.
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6.4 An Application to Alzheimer’s Disease

We illustrate MiMoPLS with a data set—from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)—
that contains brain imaging data obtained from diffusion tensor imaging (DTI)—as measured with fractional
anisotropy (FA)—and genetic data obtained from single nuclear polymorphisms (SNPs). These data come
from Phase 1 of the ADNI database (adni.loni.usc.edu). ADNI was launched in 2003 as a public-
private funding partnership and includes public funding by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, and the Food and Drug Administration. The primary
goal of ADNI has been to test a wide variety of measures to assess the progression of mild cognitive impair-
ment and early AD. The ADNI project is the result of efforts of many co-investigators from a broad range of
academic institutions and private corporations. Michael W. Weiner, MD (VA Medical Center and University
of California San Francisco) is the ADNI PI. Subjects have been recruited from over 50 sites across the U.S.
and Canada (for up-to-date information, see www.adni-info.org).

Participants include 29 individuals from the ADNI2 cohort classified into 4 groups: control (N = 9;
CON), early mild cognitive impairment (N = 11; eMCI), late mild cognitive impairment (N = 4; `MCI),
and Alzheimer’s Disease (N = 5; AD). All participants were genotyped with genome-wide SNPs (Illumina
HumanOmniExpress). SNPs underwent standard preprocessing (SNP & participant call rates were ≥ 90%,
Hardy-Weinberg disequilibrium ≤ 1× 10−6, and minor allele frequency ≤ 5%). From the genome-wide
data, we extracted 386 SNPs that, according the literature and aggregate sources [35], should be associated
with AD. We also extracted 35,062 voxels, which contained FA values, from 48 white matter tracts accord-
ing to the JHU-ICBM-DTI-81 mask (see Figure 6.1) [36]. We analyzed these data to identify the genetic
contributions to white matter changes in an AD related population.

Fig. 6.1 Masks to identify
white matter regions in a
common (MNI) space. The
left figure illustrates all the
voxels included, whereas the
right figure illustrates the
separate tracts within this
mask.

We present the analysis first with the descriptive component maps (Figure 6.2). For illustrative purposes,
we limit discussion to only the first two components. We can note that there is a higher variability of SNP-
zygotes (top left; Figure 6.2) than the FA values (top right; Figure 6.2). Interpretation of these maps are done
as they would be in CA: a SNP-zygote that is close to particular voxels is considered more related to those
voxels than is the average SNP-zygotes.

The latent variables suggest two interpretations of the components. First, Component 1 largely reflects
the differences between `MCI (left side of Component 1) and AD (right side of Component 1), whereas
Component 2 is characterized by {CON & eMCI} vs. {`MCI & AD}. This pattern suggests that Component
1 separates real AD pathology from possible misdiagnoses, whereas Component 2 appears to characterize
non-pathological to pathological features. Further, we can interpret the latent variables (bottom; Figure 6.2)
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as we would in both CA and in PLSC. Participants whose scores are closer to particular SNP-zygotes or
FA values are more associated with those features than the average participant. Furthermore, we can include
more meaningful information (e.g., group averages) to better understand the relationship between SNP-
zygotes and white matter integrity. Doing so indicates that the CON group is associated with the upper left
quadrant, the AD group is associated with the lower right quadrant, the eMCI group is associated with the
upper right quadrant, and the `MCI group is associated with the lower left quadrant. Thus, we can infer that
particular SNP-zygotes and voxels are more associated to these groups than others. However, given that there
are so many SNP-zygotes and voxels, we use inferential methods to eliminate non-significant SNP-zygotes
and voxels.

One approach is to use the bootstrap [37, 38] and to compute bootstrap ratio values (BSRs) [24] which
are t statistics computed from the mean and standard deviation of the bootstrap distribution. With BSRs, we
can reduce the number of items to interpret by selecting only the items that significantly contribute to the
component structure (see Figure 6.3): Here we only show items whose BSR magnitude is larger than 2.50.
SNPs are labeled by the Gene with which they are most associated, the voxels are plotted in standard MNI
brain maps.

We first interpret the brain images (because more is known about white matter integrity than genetics in
clinical populations); they provide a baseline from which a genetic relationship can be inferred. Component 1
(Figure 6.4; lower left) shows small clusters in bilateral superior corona radiata and posterior internal capsule
(blue colored voxels), whereas there are large clusters throughout anterior white matter tracts (i.e., genu
and body of corpus callosum, internal and external capsule, and corona radiata; denoted with red voxels).
Component 2, generally only has negative BSR values. The voxels (denoted in red) trace a path from lateral
temporal lobe, to longitudinal tracts leading to frontal regions (i.e., internal and external capsuale, and corona
radiata). Taken in context with the latent variables (Figure 6.2), changes in white matter in anterior tracts are
more associated with AD, whereas longitudinal tracts are more associated with `MCI. This pattern suggests
that early biomarkers indicate the progression from `MCI to AD and, overall, as indicated by Figure 6.4
that particular markers are associated with specific clinical groups: For example, UCK2 heterozygotes are
more associated with `MCI whereas UCK2 major homozygotes are more associated with AD. Component 2
identifies fiber paths that interconnect temporal, parietal, and frontal regions—all regions often implicated in
the progression of Alzheimer’s pathology. Taken in context with the latent variables (Figure 6.2), this pattern
suggest that there are substantial changes in these regions in late stage (`MCI) and pathological (AD) groups.
Finally Figure 6.4 shows that the heterozygote SNP associated with ZNF423 and the minor homozygote of a
SNP associated with APOE—a pattern that confirms the importance of these two genes routinely associated
with AD.

6.5 Conclusion

This article presents a new approach to PLS that integrates mixed-data types. Our presentation included con-
tinuous (brain imaging) and categorical (SNPs) data, but the method can be easily extended to ordinal data
(via thermometer coding, see Section 6.3.1). Though we present MiMoPLS via PLSC, MiMoPLS can easily
be extended to other PLS approaches (e.g., regression, path-modeling). Future work includes regularization
and sparsification designed specifically for block-wise categorical data [39] and two-way sparsification of
the SVD [40].
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Fig. 6.2: Top figures show the individual participants’ scores (latent variables) with respect to the SNP-
zygotes (left) and FA values (right). The average of each participant group is labeled with a large square,
whereas participants are labeled with small circles. Bottom figures show the component scores of the SNP-
zygotes (left; colored by zygote), and the voxels (right; colored by tract).
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SNP-alleles

Component 1: 11.121% Explained Variance

C
om

po
ne

nt
 2

: 6
.3

44
%

 E
xp

la
in

ed
 V

ar
ia

nc
e

rs10929604_A.aa

rs4663992_T.aa

rs954767_C.aa

rs10104739_G.aa

rs895734_C.aa

rs9508327_A.aa

rs7159007_C.AA rs7159007_C.Aa

rs2411916_C.aa

rs16965142_C.aa

rs264266_G.aa

rs660751_T.AA

rs2385522_G.aa

rs861136_T.aars4904087_T.Aa

rs4904087_T.AA

rs2242466_G.Aars13337856_T.aa

rs12075898_T.Aa
rs12075898_T.AA

rs12066877_T.Aa

rs12066877_T.AA
rs6750514_A.aa

rs1981725_A.aars4673207_C.aa

rs17552506_G.Aa

rs4866941_A.aars320661_C.aa

rs320661_C.AA

rs1859040_C.aa

rs7872205_T.Aa
rs181676_A.aa

rs1883099_T.aa
rs10830213_G.aars2235976_C.aars405509_C.aars9608693_G.aars1046267_T.Aa

rs1046267_T.AA

rs7206460_C.aa

Voxels

Component 1: 11.121% Explained Variance

C
om

po
ne

nt
 2

: 6
.3

44
%

 E
xp

la
in

ed
 V

ar
ia

nc
e

Fig. 6.3: Bootstrap ratios identify items that significantly contribute to the component structure.
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